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1 Poisson Synthetic Data

This supplement describes the way Poisson synthetic data were generated and analyzed.

1.1 Data Generation

Let the subindices m and p denote maternal (D. melanogaster) and paternal (D. simulans), respectively.

Data under three simulation scenarios were generated. Each is a variation of the simulation scheme presented

below. In order to describe the scheme for generating synthetic data we introduce the following notation:

xs
i,RNA = number of (simulated) reads from maternal in the RNA for biorep i,

ys
i,RNA = number of (simulated) reads from paternal in the RNA for biorep i,

xs
i′,DNA = number of (simulated) reads from maternal in the DNA for biorep i′,

ys
i′,DNA = number of (simulated) reads from paternal in the DNA for biorep i′,

i = 1, . . . I, i′ = 1, . . . I ′. I the total number of RNA biological replications and I ′ the number of DNA

biological replications. Here I = I ′ = 3 as in the real dataset. The superindex s is a reminder that this is

simulated data. The sampling distributions for the RNA counts are,

xs
i,RNA

iid∼ Poisson(Bµm) and ys
i,RNA

iid∼ Poisson((1−B)µp), i = 1, 2, . . . , I, (1)

and for the DNA counts are,

xs
i′,DNA

iid∼ Poisson(BµDNA) and ys
i′,DNA

iid∼ Poisson((1−B)µDNA) i′ = 1, 2, . . . , I ′. (2)

Here B denote the bias parameter (B = 1/2 is no bias). In particular, when B = 1/2, the expected

maternal DNA counts and the expected paternal DNA counts are the same. Let R = µm/µp be the ratio of

the RNA maternal mean counts and RNA paternal mean counts after correcting for bias. So R = 1 when

there is no AI; and, for example, when R = 2 the RNA maternal counts have mean twice the paternal counts

mean, if there were no systematic bias (B = 1/2), or after correcting for it. In all scenarios we randomly

draw 104 exons from the real dataset. We use the RNA and DNA real counts to define RNA and DNA
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mean counts µm, µp and µDNA in the simulated datasets. We use the sampling distributions (1) and (2)

to generate data for every exon. The full notation is µm,g, µp,g, and µDNA,g with g = 1, 2, . . . , 104, but, to

simplify notation, we omit the exon subindex g. For every exon, we define the parameters of the sampling

distributions above, (1) and (2), in the following way:

1. Set µT ≡
∑

i(xi,RNA + yi,RNA)/I equal to the total allele-specific reads (maternal real sample RNA

mean counts+paternal real sample RNA mean counts). Here xi,RNA and yi,RNA denote the maternal

and paternal RNA counts for the biorep i in the real dataset.

2. To mimic the real data set we will generate I = 3 counts (corresponding to 3 bioreps) labeled as

originated from maternal alleles and I = 3 counts labeled as originated from paternal alleles.

3. The maternal allele counts have mean Bµm with µm = aµT , and the paternal allele counts have mean

(1−B)µp with µp = bµT , with a and b positive constants. To mimic the coverage of the real data set

in our synthetic data sets, we require Ba + (1 − B)b = 1 so that Bµm + (1 − B)µp = µT . Moreover,

we require a/b = R so that R = µm/µp. Solving this system of equations we obtain

a = Rb and b =
1

(R− 1)(1−B) + 1
(3)

4. We simulate DNA data only in Scenario 1, there we describe how we do so.

1.2 Scenario 1: No AI and No Bias

We simulate a dataset with 104 exons and no AI, i.e. R ≡ 1, and no bias, i.e. B = 1/2, or, equivalently,

with a = b = 1 in (3). In addition, we generated DNA simulated counts as we did with the RNA counts

but, to mimic the real data DNA coverage, setting µT,DNA ≡
∑

i′(xi′,DNA + yi′,DNA)/I ′ (defined as µT in

1 Subsection 1.1 but with the DNA, instead of RNA, data) equal to the maternal real sample DNA mean

counts+paternal real sample DNA mean counts, we then set µDNA = (1/2)µT,DNA.

We analyze this data set with

1. Negative binomial model in [1] with the parameter p random (plays the same roll of q or φ in the PG

model) .

2. PG model with φ (random). Remember that, for comparison, we consider φ assuming the same DNA

model that the negative binomial model in [1].

3. Binomial exact test.

4. PG model with q = 1/2 (fixed).

We estimate the type I error rate (TIER) of each procedure as the proportion of exons where the procedure

finds significant AI. The binomial exact test concludes an exon shows AI if its p-value is less than 0.05. The

PG and Negative binomial models conclude an exon shows AI if the central 95% credible interval for the

proportion of paternal reads does not contain 0.5. Table 1 in the paper shows the results.
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1.3 Scenario 2: No AI and Bias

We simulate a dataset with 104 exons and no AI, i.e. R ≡ 1. To generate bias count samples, we set B = 0.45

for the first 5000 genes and B = 0.55 for the last 5000 genes.

We analyze this data set with

1. Binomial exact test.

2. PG model with q = 1/2 (fixed).

3. PG model with q = B (fixed).

We estimated the TIER for this dataset. The results are reported in the paper.

Additionally, we generated data sets with B = 0.35, 0.375, 0.4, 0.425, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50 for all

exons, analyze the data set with the procedures 1-3 above and, also, with the PG model with different levels

(1,2,5 and 10%) of misspecification of B. This is, we analyze these data sets with PG models with values

of q = d × B with d = 1.01, 1.02, 1.05 and 1.1. This allows us to examine the results to those for the PG

model with q = 1/2 and the binomial exact test in terms of TIER (See Figures 2 in the main manuscript)

and compare the TIERs of the PG model at different levels of misspecification (See Figure 3 in the main

manuscript).

1.4 Scenario 3: AI and Bias

We simulate a dataset with 104 exons with AI, setting R = 1.5 and with systematic bias, setting B = 0.45

for the first 5000 exons and B = 0.45 for the last 5000 genes. That is, we generate allele-specific counts with

poisson µm = a0.45 ∗ µT and µp = b(1 − 0.45) ∗ µT for the first 5000 genes, and µm = a(0.55) ∗ µT and

µp = b(1− 0.55) ∗ µT for the last 5000 genes. The constants a and b are computed according to (3).

We analyze this data set with

1. Binomial exact test.

2. PG with q = 1/2 (fixed).

3. PG with q = B (fixed).

We estimate the power of each one of the procedures as the proportion of exons that the procedure flags as in

AI. We compare the PG model and the binomial exact test in terms of the receiver operating characteristic

(ROC) curve (Additional file 1: Figure S1).
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Additional file 1: Figure S1: The datasets of scenarios 2 and 3 were merged to obtain a dataset with 104

exons not in AI and 104 exons in AI. For each exon we compute the “Bayesian pvalue”= 2 min{P [α > 1 |
data], P [α < 1 | data]}, this is, the minimum value, such that the central 1−“Bayesian pvalue” credible

interval does not contain α = 1 (See [2]), remember α is a parameter in the PG model. We used these

“Bayesian p-values” under the PG model with q = B and under the PG model with q = 1/2 as classifiers in

the ROC curve. We used the p-values of the exact binomial test as classifier for a third ROC curve.
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